References

  1. E.L. Andreas (1988). Estimating Cn2 Over Snow and Sea Ice from Meteorological Data. J. Opt. Soc. Am. A., Vol. 5:4, [481-495]. DOI: https://doi.org/10.1364/JOSAA.5.000481

  2. M. Braam, A.F. Moene, F. Beyrich, et al. (2014). Similarity Relations for CT2 in the Unstable Atmospheric Surface Layer: Dependence on Regression Approach, Observation Height and Stability Range. Boundary-Layer Meteorology Vol. 153, [63-87]. DOI: https://doi.org/10.1007/s10546-014-9938-y

  3. O.K. Hartogensis, C.J. Watts, J. Rodriguez, and H.A.R. De Bruin (2003). Derivation of an Effective Height for Scintillometers: La Poza Experiment in Northwest Mexico. J. Hydrometeor., Vol. 4, [915-928]. DOI: https://doi.org/10.1175/1525-7541(2003)004<0915:DOAEHF>2.0.CO;2

  4. A. Jeričević, B Grisogono (2006). The Critical Bulk Richardson Number in Urban Areas: Verification and Application in a Numerical Weather Prediction Model. Tellus A: Dynamic Meteorology and Oceanography, Vol. 58:1, [19-27]. DOI: https://doi.org/10.1111/j.1600-0870.2006.00153.x

  5. J. Kleissl, J. Gomez, S.H. Hong, et al. (2008). Large Aperture Scintillometer Intercomparison Study. Boundary-Layer Meteorology, Vol. 128, [133-150] (2008). DOI: https://doi.org/10.1007/s10546-008-9274-1

  6. L.M.J. Kooijmans, O.K. Hartogensis (2014). Surface-Layer Similarity Functions for Dissipation Rate and Structure Parameters of Temperature and Humidity Based on Eleven Field Experiments. Boundary-Layer Meteorol Vol. 160, [501-527]. DOI: https://doi.org/10.1007/s10546-016-0152-y

  7. D. Li, E. Bou-Zeid & H.A.R. De Bruin (2012). Monin-Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity. Boundary-Layer Meteorology Vol. 145, [45-67]. DOI: https://doi.org/10.1007/s10546-011-9660-y

  8. B. Maronga, O.K. Hartogensis, S. Raasch et al. (2014). The Effect of Surface Heterogeneity on the Structure Parameters of Temperature and Specific Humidity: A Large-Eddy Simulation Case Study for the LITFASS-2003 Experiment. Boundary-Layer Meteorology, Vol. 153, [441-470]. DOI: https://doi.org/10.1007/s10546-014-9955-x

  9. A.F. Moene (2003). Effects of Water Vapour on the Structure Parameter of the Refractive Index for Near-Infrared Radiation. Boundary-Layer Meteorology, Vol. 107, [635-653]. DOI: https://doi.org/10.1023/A:1022807617073

  10. J.C. Owens (1967). Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition. Appl. Opt., 6:1 [51-9]. PMID: 20057695. DOI: https://doi.org/10.1364/AO.6.000051

  11. C.A. Paulson (1970). The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorology, Vol. 9:6 [857-861]. DOI: https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2

  12. Scintec AG (2022). Scintec Scintillometers Theory Manual (SLS/BLS). Version 1.05. Scintec AG, Rottenburg, Germany.

  13. Scintec AG (2008). Scintec Boundary Layer Scintillometer User Manual. Version 1.49. Scintec AG, Rottenburg, Germany.

  14. M. Striednig, M. Graus, T.D. Märk, T.G. Karl (2020). InnFLUX - an Open-Source Code for Conventional and Disjunct Eddy Covariance Analysis of Trace Gas Measurements: an Urban Test Case. Atmospheric Measurement Techniques, Vol. 13:3, [1447-1465]. DOI: https://doi.org/10.5194/amt-13-1447-2020

  15. V. Thiermann, H. Grassl (1992). The Measurement of Turbulent Surface-Layer Fluxes by Use of Bichromatic Scintillation. Boundary-Layer Meteorology, Vol. 58, [367-389]. DOI: https://doi.org/10.1007/BF00120238

  16. H.C. Ward, J.G. Evans, O.K. Hartogensis, A.F. Moene, H.A.R. De Bruin, C.S.B. Grimmond (2013). A Critical Revision of the Estimation of the Latent Heat Flux from Two-Wavelength Scintillometry. Q.J.R. Meteorology Soc., Vol. 139 [1912-1922]. DOI: https://doi.org/10.1002/qj.2076

  17. J. C. Wyngaard, Y. Izumi, and S. A. Collins (1971). Behavior of the Refractive-Index-Structure Parameter near the Ground. J. Opt. Soc. Am., Vol. 61:12, [1646-1650]. DOI: https://doi.org/10.1364/JOSA.61.001646

  18. Y. Zhao, L.W. Chew, A. Kubilay, J. Carmeliet (2020). Isothermal and Non-Isothermal Flow in Street Canyons: a Review From Theoretical, Experimental and Numerical Perspectives. Building and Environment, Vol. 184 [107163] . DOI:https://doi.org/10.1016/j.buildenv.2020.107163